

SpadinaBus Offers Engine Technical
Documentation

1. Change Log 3

2. Project Overview 4
2.1 Summary 4
2.2 Offer Selection Configuration 4

2.2.1 Offer Expiration 5
2.2.2 Recency Window Views 5
2.2.3 All Time Views 6
2.2.4 Default Offer 7

2.3 Offer Selection Logic 7
2.3 Architecture 8
2.4 Sequence Diagram 8
2.5 Offer Data Structure 9

2.5.1 Fields 9
2.5.2 ER Diagram 9
2.5.3 Example 10

3. AWS Services 11
3.1 API Gateway 11
3.2 Lambda 11

3.2.1 GetOffers Lambda 11
3.2.2 UploadOfferData Lambda 12

3.3 DynamoDB 12
3.4 S3 13

3.4.1 GetOfferConfigs Bucket 13
3.4.2 Whitelist CSV Bucket 13

3.5 Cognito 13
3.6 IAM 13

3.6.1 GetOffers Lambda Role 13
3.6.2 UploadOfferData Lambda Role 14

3.7 CloudWatch 14
3.8 Amplify 14

4. API Documentation 15
4.1 Request 15

Page 2

4.2 Responses 15
4.2.1 200 OK 15

Schema 15
Notes 16
Example 16

4.2.1 401 Unauthorized 16
Schema 16
Example 16

5. Project Setup Guide 17

Page 3

1. Change Log

Date Author Summary

1 August 11 2020 Tom Pedron Initial document skeleton and contents

Page 4

2. Project Overview

2.1 Summary
The purpose of this project is to construct a cloud-oriented offer serving engine that is highly
available, scalable, configurable and maintainable. An endpoint must be exposed for
applications and websites to integrate with to retrieve offers for logged in customers.

Offers are assigned to customers using other marketing software that produces an
offer-customer whitelist CSV file. This whitelist maps an offer_id to a customer_id along with a
score used to prioritize the best offers for each customer. This CSV is loaded into a highly
available datastore (AWS DynamoDB) for querying.

Offers are selected based on score and various configurations defining limits on viewing of
offers by a customer. When a best offer is selected, a view is logged for it to the offer datastore.
The offer data is then returned to the client who will present the best offer based on the offer_id.

2.2 Offer Selection Configuration
The system returns a single best offer for a customer. As mentioned in 2.1, there are several
configurations in place to define how many times an offer can be shown to a user before
suppressing it in favor of the next best offer. The purpose is to prevent marketing fatigue in
customers.

These configurations are defined in ​config.json ​ which is loaded on execution of the
GetOffer request. Below is an example of ​config.json ​:

{

 "offer_exclusion": {

 "expired_offers": {

 "enabled": ​true​,
 "max_age_days": ​14
 },

 "views_recency_window": {

 "enabled": ​true​,
 "num_hours": ​48​,
 "max_views": ​6
 },

 "views_all_time": {

 "enabled": ​true​,
 "max_views": ​10

Page 5

 }

 },

 "default_offer": {

 "offer_id": ​"DefaultOffer1"
 }

}

2.2.1 Offer Expiration
You can exclude offers loaded into DynamoDB for a user that were loaded prior to a certain
date since they are old and out of date.

offer_exclusion.expired_offers.enabled

● Description: Sets whether we exclude older offers from consideration when selecting
offers.

● Type: boolean
● Values: ​true ​ or ​false

Offer_exclusion.expired_offers.max_age_days

● Description: Sets the limit date timestamp we use to filter out older offers.
○ The limit date is calculated as current_date - max_age_days. This value is

compared to the LoadedAt value for offers in DynamoDb.
○ Note that this value is ignored when enabled is false.

● Type: integer
● Values: ​values >= 1
● Example: 21

○ Offers loaded into DynamoDb more than 3 weeks ago will be excluded from
consideration.

2.2.2 Recency Window Views
You can exclude offers that have been seen a certain amount of times within a configured
recency window.

offer_exclusion.views_recency_window.enabled

● Description: Sets whether we exclude offers from consideration that have been seen a
certain amount of times in the configured recency window.

● Type: boolean
● Values: ​true ​ or ​false

offer_exclusion.views_recency_window.num_hours

● Description: Used to calculate the limit date timestamp we use to determine which offer
views occurred during the configured recency window.

Page 6

○ Note that this value is ignored when enabled is false.
● Type: integer
● Values: ​values >= 1
● Example: 48

○ The system will calculate how many of the offer’s views occurred in the last 2
days. If greater than the max_views value then the offer is excluded from
consideration.

offer_exclusion.views_recency_window.max_views

● Description: Sets the maximum number of views an offer may have within the configured
recency window.

○ If the total number of views in the recency window is equal to or greater than the
max_views value, then the offer is excluded from selection.

○ Note that this value is ignored when enabled is false.
● Type: integer
● Values: ​values >= 1
● Example: 3

○ Offers with 3 or more views in the recency window will be excluded from
consideration.

2.2.3 All Time Views
You can exclude offers that have been seen a certain amount of times, regardless of when they
occurred.

offer_exclusion.views_all_time.enabled

● Description: Sets whether we exclude offers from consideration that have been seen a
certain amount of times in the configured recency window.

● Type: boolean
● Values: ​true ​ or ​false

offer_exclusion.views_all_time.max_views

● Description: Sets the maximum number of views an offer may have.
○ If the total number of views is equal to or greater than the max_views value, then

the offer is excluded from selection.
○ Note that this value is ignored when enabled is false.

● Type: integer
● Values: ​values >= 1
● Example: 10

○ Offers with 10 or more views will be excluded from consideration.

Page 7

2.2.4 Default Offer
When no best offer is determined for a customer (either they have no offers loaded for them in
DynamoDB or they have all been excluded due to the expiration or max views configurations),
the offer_id defined here will be returned.

default_offer.offer_id

● Description: They offer_id to be returned when a default offer is selected for the
customer.

● Type: string
● Example: “DefaultOffer123”

2.3 Offer Selection Logic
Below is a detailed summary of the logic used to select a best offer for a customer.

1. Retrieve all offers in DynamoDb for the customer.
2. If 0 offers returned than return ​default_offer.offer_id
3. If ​offer_exclusion.expired_offers.enabled ​ = True

○ Filter out offers that have a LoadedAt timestamp > (current time -
offer_exclusion.expired_offers.max_age_days ​)

■ I want to keep looking into how to do this best via the Dynamo query
but for now this is implemented in the code

4. Sort remaining offers by highest score
5. Set current_best_offer = highest scored offer
6. Validate current_best_offer for exclusion rules. There are 2 rules right now based on

the number of times the customer has seen that offer .
○ If ​offer_exclusion.views_recency_window.enabled ​ = True

■ Count the number of views (these are timestamps) for
current_best_offer that are greater than (current time -
offer_exclusion.views_recency_window.num_hours)

■ Exclude current_best_offer if the count from above >=
offer_exclusion.views_recency_window.max_views

○ If ​offer_exclusion.views_all_time.enabled ​ = True
■ Count the number of views for the current_best_offer
■ Exclude current_best_offer if count from above >=

offer_exclusion.views_all_time.max_views

○ If any rules above fail then set current_best_offer to next offer in the list and try
again

7. At this point we have determined our best_offer or excluded all offers, in which case
we return default_offer.offer_id.

8. Return the best offer.

Page 8

2.3 Architecture
The project leverages a serverless cloud based architecture to allow for a highly scalable and
maintainable system.

Below is high level architecture diagram showing the connections between components:

2.4 Sequence Diagram
Below is a sequence diagram showing the intended usage of the system from authentication to
retrieving offers.

Page 9

2.5 Offer Data Structure
The system leverages a single AWS DynamoDB table. Each item in the table represents a
single offer mapped to a single user.

2.5.1 Fields
Below are the fields contained in each item:

● CutomerId
○ Description: The email of the customer this offer is associated with. It must

match the customer’s account username in AWS Cognito.
○ Type: String
○ Example: ​"tom@spadinabus.com"

● OfferId
○ Description: The id of the offer associated to the customer. Many customers can

be mapped to the same OfferId through separate items in the table.
○ Type: String
○ Example: ​"OfferA"

● OfferScore
○ Description: The score of the offer for the customer.
○ Type: Integer
○ Example: ​90

● LoadedAt
○ Description: The timestamp of when the offer was uploaded to DynamoDB.
○ Type: Timestamp String
○ Format: ​"%m/%d/%Y, %H:%M:%S"
○ Example: ​"08/11/2020, 14:27:23"

● OfferViews
○ Description: A list of timestamps representing each view of the offer by the

customer. The array is initialized as empty and appended to each time the offer
is returned as the best offer.

○ Type: Array of Timestamp Strings
○ Format: Each string in the array is in ​"%m/%d/%Y, %H:%M:%S" ​ format
○ Example: ​["08/11/2020, 14:27:23"]

2.5.2 ER Diagram
Below is an diagram of the Offer Customer Whitelist table in DynamoDB:

Page 10

2.5.3 Example
Below is an example of what a single item looks like in the table:

{

 "CustomerId": ​"tom@spadinabus.com"​,
 "LoadedAt": ​"08/01/2020, 00:00:00"​,
 "OfferId": ​"OfferB"​,
 "OfferScore": ​90​,
 "OfferViews": [

 ​"08/11/2020, 14:27:23"​,
 ​"08/11/2020, 14:27:27"​,
 ​"08/11/2020, 14:30:51"​,
 ​"08/11/2020, 14:31:07"​,
 ​"08/11/2020, 14:31:07"
]

}

Page 11

3. AWS Services
Since this project architecture is a cloud-based serverless system, many AWS services are
leveraged. Below is a summary of each service used along with details around how.

3.1 API Gateway
API Gateway exposes the GET /offers endpoint. It allows AWS to accept the HTTP request,
authenticate using the existing Cognito user pool and pass along with event context to the
GetOffers Lambda function. It receives a JSON response from the Lambda function and then
returns it as an HTTP response to the client along with a 200 OK status code.

Notes:

- CORS must be enabled on the offer resource.
- The Lambda Integration Proxy must be enabled.
- The endpoint must be set as “Edge Optimized”
- An authorizer must be created with a connection to the AWS Cognito User Pool.
- The GET endpoint must have its authorizer set to the authorizer mentioned above.
- The API Source key must be set as HEADER.

3.2 Lambda
Lambda offers the ability to run code snippets in the cloud without the need for provisioning,
servers or any other work traditionally required to deploy endpoints. With Lambda, you deploy a
piece of code and trigger it to run programmatically.

There are 2 Lambda functions:

- GetOffers Lambda: triggered by API Gateway to select the best offer for a customer.
- UploadOfferData Lambda: triggered by a new file upload to the Whitelist CSV bucket

and inserts new items into the Offer-Customer Whitelist table in DynamoDB.

3.2.1 GetOffers Lambda
The Python 3.7 code provided (see ​get_offer_lambda.py ​) that implements the GetOffers
logic described in this document must be deployed as is with the following exceptions:

- There are default configuration values set that are overridden by loading config.json from
the S3 bucket. If you wish to change the defaults, please modify the JSON defined near
the top of the code.

- The Offer-Customer WhiteList DynamoDB table name is defined in the code. Please
change this to the name of your table.

Page 12

- The S3 Bucket that contains the config.json file is defined in the code. Please change
this to the name of your bucket.

Notes:

- The Lambda function must have a IAM Role defined that contains the
AWSLambdaBasicExecutionRole and the appropriate permissions for accessing S3 and
DynamoDB.

- You must enable Logs and Metrics on the Lambda function to allow for logs to be saved
each time the function is executed. They will be accessible via AWS CloudWatch.

3.2.2 UploadOfferData Lambda
The Python 3.7 code provided (see ​upload_offers_lambda.py ​) that implements the
UploadOffers logic described in this document must be deployed as is with the following
exceptions:

- The Offer-Customer WhiteList DynamoDB table name is defined in the code. Please
change this to the name of your table.

- The S3 Bucket that contains the config.json file is defined in the code. Please change
this to the name of your bucket.

Notes:

- The Lambda function must have a IAM Role defined that contains the
AWSLambdaBasicExecutionRole and the appropriate permissions for accessing S3 and
DynamoDB.

- An S3 trigger must be set up so it executes whenever a new .csv file is uploaded to the
Whitelist Bucket.

- You must enable Logs and Metrics on the Lambda function to allow for logs to be saved
each time the function is executed. They will be accessible via AWS CloudWatch.

3.3 DynamoDB
This project requires a single DynamoDB table called the Offer-Customer Whitelist table.

The UploadOfferData Lambda function uploads items to the table that map offers to customer
emails.

The GetOffer Lambda function queries this table for offers mapped to a customer_id and also
updates individual items in the table with view information when offers are selected as best
offers.

Page 13

3.4 S3
There are 2 S3 buckets required for this project.

3.4.1 GetOfferConfigs Bucket
Stores the ​config.json ​ file used to configure the GetOffers Lamba function’s offer selection
logic.

3.4.2 Whitelist CSV Bucket
Stores all the ​.csv ​ files containing mappings of offers to customers. This bucket is configured
to run a Lambda function each time a CSV file is uploaded which loads each row in the CSV as
an item in the Offer-Customer Whitelist table in DynamoDB.

3.5 Cognito
Cognito is an AWS-manager service to handle User registration, sign in and authorization.
Cognito is required for the following reasons:

- To secure the GetOffer endpoint to only registered users and issue an authentication
token.

- To identify what user we are requesting offers for by mapping an issued authentication
token to the user’s email. This allows us to query for offers associated with this email in
the Offer-Customer whitelist table in DynamoDB.

3.6 IAM

3.6.1 GetOffers Lambda Role
An IAM Role must be created for the GetOffers Lambda function with the
AWSLambdaBasicExecutionRole ​ permission.

This role must also have the following permissions defined in an inline Policy associated to
allow it to access DynamoDB and S3:

- DynamoDB
- "dynamodb:PutItem"

- "dynamodb:GetItem"

- "dynamodb:Query"

- "dynamodb:UpdateItem"

- S3
- "s3:GetObject"

Page 14

The JSON that defines this inline policy is provided but will need to be updated with:
- The ARN of your DynamoDB Customer-Offer whitelist table
- The name of your S3 bucket that contains config.json

3.6.2 UploadOfferData Lambda Role
An IAM Role must be created for the UploadOfferData Lambda function with the
AWSLambdaBasicExecutionRole ​ permission.

This role must also have the following permissions defined in an inline Policy associated to
allow it to access DynamoDB and S3:

- DynamoDB
- "dynamodb:PutItem"

- S3
- "s3:GetObject"

The JSON that defines this inline policy is provided but will need to be updated with:

- The ARN of your DynamoDB Customer-Offer whitelist table
- The name of your S3 bucket that contains the whitelist csv

3.7 CloudWatch
Cloudwatch allows you to access execution logs of both Lambda functions which is important
for troubleshooting and data tracing.

3.8 Amplify
Amplify is used to host the demo website that integrates with Cognito and makes GET calls for
offers. It allows for a simple registration flow, logging in and request offers.

Page 15

4. API Documentation
Please note that the GetOffers API endpoint JSON response conforms to the JSON API
specification, please see ​https://jsonapi.org

4.1 Request
The HTTP request is of type GET. Below is a sample request (note that a Authorization header
containing the IdToken returned by AWS Cognito is also required):

GET <API Gateway Offer Resource Invoke URL>/<stage>/offer

Here is an example CURL of the request

curl --location --request GET

'https://sbiu9g0d4a.execute-api.us-east-1.amazonaws.com/dev/offer'​ \
--header ​'Authorization:
eyJraWQiOiJMZ1N3MkRrV3FTcHB5ZHk2elB3U2tqcTVnRzI4NEg0M3Vlb2d6TkFyVUdjPSIsImF

sZyI6IlJTMjU2In0.eyJzdWIiOiJmYTUzYTg4My1lYWY3LTQzYTAtYjYzZi1jMzgxOWRmNzJmMj

UiLCJhdWQiOiI2cDJ1b2xvNW03ZXNiNzEwZTUwNnVlajNjaSIsImVtYWlsX3ZlcmlmaWVkIjp0c

nVlLCJldmVudF9pZCI6IjgwMzQ3ZjBjLTBhZGEtNDMzMy1hMTEzLTg5YTQ3OGZhMDIyOSIsInRv

a2VuX3VzZSI6ImlkIiwiYXV0aF90aW1lIjoxNTk3MTA5MTY1LCJpc3MiOiJodHRwczpcL1wvY29

nbml0by1pZHAudXMtZWFzdC0xLmFtYXpvbmF3cy5jb21cL3VzLWVhc3QtMV83dUw1VzdaY0siLC

Jjb2duaXRvOnVzZXJuYW1lIjoidG9tQHNwYWRpbmFidXMuY29tIiwiZXhwIjoxNTk3MTEyNzY1L

CJpYXQiOjE1OTcxMDkxNjUsImVtYWlsIjoidG9tQHNwYWRpbmFidXMuY29tIn0.G8DL9haRdT5Q

6dyNf06a2mqLvhmBhG1r2Zdb2uB1HUbOnoAARXAYBZfooMp8CyjAgDBRk2c3ODXKc32XMpb8xDQ

aYWBKSe1gwUv5sV5SZlSe1f5p_I_uDNzeLWtLyzskl_bHHbHLmmTSCD7dvVJIPU6JAX_WKBCPHJ

460DnpYotrGsNNtswuS2NRCpp8UQKpXwD-gPtu3b0FTHppF5pXCNF0HSNu5bEpl6wHt-f4PkZao

VY3xnV4MaSwCWyImEhym1V9PWwc65BUYt7FmAGyUu4S43jfkPkzWlkd0VZoRGhivnrODvYKHc5g

GgLd4JdQeU18O1SkOm8qeDNESu02jQ'​ \
--header ​'Content-Type: application/json'

4.2 Responses

4.2.1 200 OK

Schema
- data (array of object)

- id (string)

https://jsonapi.org/

Page 16

- type (string)

- attributes (object)

- score (integer or null)

- rank (integer or null)

- num_views (integer)

- is_default_offer (boolean)

Notes
- When the default offer is returned, the score and rank are set to ​null ​ and

is_default_offer ​ is set to true.

Example

{

 "data": [

 {

 "id": ​"OfferB"​,
 "type": ​"Offer"​,
 "attributes": {

 "score": ​90​,
 "rank": ​1​,
 "num_views": ​2​,
 "is_default_offer": ​false
 }

 }

]

}

4.2.1 401 Unauthorized

Schema
- message (string)

Example

{

 "message": ​"Unauthorized"
}

Page 17

Page 18

5. Project Setup Guide

1. Setup the AWS Cognito User Pool
a. Navigate to Cognito on the AWS console.
b. Click on Create a User Pool
c. Provide a name and click Create.
d. Note the pool_id returned as it is required for a website to integrate with Cognito

for Registration and Sign in.
e. Navigate to App Clients on the left hand side
f. Click on Add an app client
g. Provide a name, uncheck “generate client secret” and click create
h. Note the appclient_id as it is required for a website to integrate with Cognito for

Registration and Sign in.

2. Create DynamoDB table
a. Navigate to DynamoDB on the AWS console.
b. Click create
c. Provide a name
d. Set the Partition Key to “CustomerId” as a String
e. Set the Sort Key to “OfferId” as a String
f. Leave the default settings and click Create.
g. Note the ARN on the summary page as it is required to be set in the policies for

the Lambda functions that read and write to/from this table.

3. Create Config S3 Bucket
a. Navigate to S3 in the AWS console
b. Create a private S3 bucket and provide a name such as GetOffersConfig.
c. Upload ​config.json ​ file

4. Create GetOffers IAM Role

a. Navigate to IAM in the AWS console and select Roles
b. Click Create New Role and select Lambda
c. Add AWSLambdaBasicExecutionRole to the Role
d. Click next and add a name.
e. Click create
f. Add an inline policy to the Role (the JSON for this is provided, see

inline_policy_get_offers_lambda.json)
i. Edit the Dynamo permissions with the correct ARN from step 2g.
ii. Edit the S3 permissions with the correct bucket name for the Configs S3

bucket from step 3b.

Page 19

5. Create GetOffers Lambda function

a. Navigate to Lambda in the AWS console
b. Create a new Lambda function
c. Provide a name and select Python 3.7 as the runtime
d. Select the GetOffers IAM role from step 4 as the role.
e. Click create
f. Paste in the provided python code (see get_offer_lambda.py) for this function

and update the following global variables near the top of the code:
i. offer_whitelist_table_name: set this string to the name of the DynamoDB

table created in step 2
ii. configs_bucket_name: set this string to the name of the Configs bucket

created in step 3.
g. Click save.

6. Create OfferWhiteListCSV S3 bucket

a. Navigate to S3 in the AWS console
b. Create a private S3 bucket and provide a name such as OfferWhitelists.

7. Create UploadOfferData IAM role

a. Navigate to IAM in the AWS console and select Roles
b. Click Create New Role and select Lambda
c. Add AWSLambdaBasicExecutionRole to the Role
d. Click next and add a name.
e. Click create
f. Add an inline policy to the Role (the JSON for this is provided, see

inline_policy_upload_offers_lambda.json)
i. Edit the Dynamo permissions with the correct ARN from step 2g.
ii. Edit the S3 permissions with the correct bucket name for the

OfferWhitelists S3 bucket from step 6b.

8. Create UploadOfferData Lambda Function & Trigger
a. Navigate to Lambda in the AWS console
b. Create a new Lambda function
c. Provide a name and select Python 3.7 as the runtime
d. Select the GetOffers IAM role from step 7 as the role.
e. Click create
f. Paste in the provided python code (see upload_offers_lambda.py) for this

function and update the following global variables near the top of the code:
i. offer_whitelist_table_name: set this string to the name of the DynamoDB

table created in step 2.
ii. whitelist_bucket_name: set this string to the name of the Offer Whitelists

bucket created in step 6.

Page 20

g. Click save.
h. Click on Add Trigger near the top of the page

i. Select S3 Trigger type
ii. Select the bucket name from step 6
iii. Set EventType = ObjectCreated
iv. Suffix = .csv
v. Check Enable trigger
vi. Click Add

9. Upload whitelist csv to OfferWhitelist S3 bucket

a. Upload your whitelist csv file to the bucket. This will trigger the Lambda created in
step 8

b. Navigate to the Items view for your DynamoDB Offer Whitelist table from step 2
and you will see the items from your whitelist csv uploaded to the table.

10. Deploy API Gateway

a. Navigate to API Gateway in the AWS Console
b. Click Create API
c. Provide a name such as GetOffersApi
d. Select Edge Optimized and click Create.
e. Create Authorizer

i. Enter a name such as GetOffersAuthorizer
ii. Select Cognito as the type
iii. Set Region to be the same region as the one that the Cognito User Pool

from Step 1 was created in.
iv. Set Cognito User Pool to the name of the User pool (step 1c)
v. Set Token source to Authorization

f. Create Offers resource
i. Under Resources select Create Resource
ii. Enter offer as the name and ensure the resource path is the same
iii. Ensure you select Enable API Gateway CORS
iv. Click create

g. Create GET offer method
i. Under the new created /offer resource, click Create Method
ii. Select GET and click the checkmark
iii. Set Integration Type to Lambda Function
iv. Set the region to the same one as the GetOffers Lambda Function from

Step 5
v. Set Lambda Function to the name of the GetOffers Lambda function from

step 5
vi. Click Save and click ok if prompted to provide permission to API

Gateway.

Page 21

vii. Click on the method request card, click edit (the pencil icon) next to
Authorization and select the Cognito User Pool Authorizer from step 10e.

h. Deploy the API
i. Select Deploy API
ii. Enter a stage (dev/staging/prod).
iii. Click deploy
iv. Note the Invoke URL provided on successful deployment.

11. Deploy test website

a. Clone the provided test website respiratory
b. Update config values in ​js/config.js

i. Cognito User Pool Id: Set this to the value from step 1d
ii. Cognito Application Client Id: Set this to the value from 1h.
iii. AWS Region: Set this to the same region used in step 1.
iv. GetOffers Invoke URL: Set this to the value from step 10h

c. Commit the updated test website repo to a Github repository.
d. Deploy to AWS Amplify

i. Navigate to AWS Amplify in the AWS console.
ii. Click Get Started and then connect your Github repository from Step 11c.
iii. Select your repository and branch from step 11c.
iv. Use the default settings provided and click next.
v. Click Save and Deploy

e. Your website will deploy in a few minutes and you will be provided with a URL.
f. Test

i. Navigate to the URL from Step 11e in your browser
ii. Register with an email that has offers mapped to it in the Offer Whitelist

table in DynamoDB. You will be emailed an OTP code to verify your
account.

iii. Sign In with your username and password.
iv. Navigate to the Get Offers page and click the request button.
v. Enjoy.

